Lifetimes in Function Calls

Lifetimes for function arguments and return values must be fully specified, but Rust allows lifetimes to be elided in most cases with a few simple rules. This is not inference – it is just a syntactic shorthand.

  • Each argument which does not have a lifetime annotation is given one.
  • If there is only one argument lifetime, it is given to all un-annotated return values.
  • If there are multiple argument lifetimes, but the first one is for self, that lifetime is given to all un-annotated return values.
#[derive(Debug)]
struct Point(i32, i32);

fn cab_distance(p1: &Point, p2: &Point) -> i32 {
    (p1.0 - p2.0).abs() + (p1.1 - p2.1).abs()
}

fn nearest<'a>(points: &'a [Point], query: &Point) -> Option<&'a Point> {
    let mut nearest = None;
    for p in points {
        if let Some((_, nearest_dist)) = nearest {
            let dist = cab_distance(p, query);
            if dist < nearest_dist {
                nearest = Some((p, dist));
            }
        } else {
            nearest = Some((p, cab_distance(p, query)));
        };
    }
    nearest.map(|(p, _)| p)
}

fn main() {
    println!(
        "{:?}",
        nearest(
            &[Point(1, 0), Point(1, 0), Point(-1, 0), Point(0, -1),],
            &Point(0, 2)
        )
    );
}
This slide should take about 5 minutes.

In this example, cab_distance is trivially elided.

The nearest function provides another example of a function with multiple references in its arguments that requires explicit annotation.

Try adjusting the signature to “lie” about the lifetimes returned:

fn nearest<'a, 'q'>(points: &'a [Point], query: &'q Point) -> Option<&'q Point> {

This won’t compile, demonstrating that the annotations are checked for validity by the compiler. Note that this is not the case for raw pointers (unsafe), and this is a common source of errors with unsafe Rust.